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IRIDIA, Université Libre de Bruxelles,

Brussels, Belgium.
nmeuleau@iridia.ulb.ac.be

Marco Dorigo
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Abstract

In this paper we introduce model-based search as a unifying frame-
work accommodating some recently proposed heuristics for combinatorial
optimization such as ant colony optimization, stochastic gradient ascent,
cross-entropy and estimation of distribution methods. We discuss similar-
ities as well as distinctive features of each method and we propose some
extensions.

1 Introduction

The necessity to solve NP-hard problems, for which the existence of efficient
exact algorithms is highly unlikely, has led to a wide range of heuristic algo-
rithms that implement some sort of search in the solution space. These heuristic
algorithms can be classified, similarly to what is done in the machine learning
field (Quinlan, 1993), as being either instance-based or model-based. Most of

∗This work was carried out while the first author was at IRIDIA, Université Libre de
Bruxelles, Belgium.
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Figure 1: Schematic description of the MBS approach.

the classical search methods may be considered instance-based, since they gen-
erate new candidate solutions using solely the current solution or the current
“population” of solutions. Typical representatives of this class are genetic algo-
rithms (Goldberg, 1989) or local search and its variants, such as, for example,
simulated annealing and iterated local search (Aarts and Lenstra, 1997). On
the other hand, in the last decade several new methods, which may be classified
as model-based search (MBS) algorithms, have been proposed. In MBS algo-
rithms, candidate solutions are generated using a parametrized probabilistic
model that is updated using the previously seen solutions in such a way that
the search will concentrate in the regions containing high quality solutions.1

The general approach is described schematically in Figure 1.
While the behavior of classical instance-based search methods has been

thoroughly investigated and is relatively well understood, the MBS field is still
little more than a collection of independently developed heuristic techniques,
without solid theoretical foundations. The goal of this paper is to provide a
unifying framework that accommodates all these seemingly unrelated methods
and to analyse their similarities as well as their distinctive features. The analysis
of these methods within a common framework allows to discriminate between
the essential elements of the algorithm and those that appear only for historical
reasons.
One well-established approach that belongs to the MBS framework is the

ant colony optimization (ACO) metaheuristic (Dorigo, 1992; Dorigo et al., 1996;
Dorigo and Di Caro, 1999). ACO’s distinctive feature is a particular type of
probabilistic model, in which a structure called construction graph is coupled
with a set of stochastic procedures called artificial ants. The artificial ants have
a two-fold function — they both generate solutions and update the model’s
parameters. Various model update rules have been proposed within the ACO
framework, but they are all of a somewhat heuristic nature and are lacking a
theoretical justification.

1In order to avoid any terminological confusion, we would like to emphasize that the term
“model” is used here to denote an adaptive stochastic mechanism for generating candidate
solutions, and not an approximate description of the environment, as done, for example, in
reinforcement learning (Sutton and Barto, 1998). There is, however, a rather close connection
between these two usages of the term “model”, as the model adaptation in combinatorial
optimization may be considered an attempt to model (in the reinforcement learning sense)
the structure of the “promising” solutions.

2



SampleModel

Learning Auxiliary
memory

Figure 2: The MBS with auxiliary memory.

On the other hand, the stochastic gradient ascent (SGA) (Bertsekas, 1995)
and the cross-entropy (CE) (Rubinstein, 1999) methods provide a systematic
way for the derivation of model update rules in the MBS framework, without
being restricted to a particular type of probabilistic model.2 As we show in
the following, both the SGA and the CE methods can be cast into the ACO
framework, and, in fact, in some cases the CE method leads to the same update
rule as does SGA. Moreover, quite unexpectedly, some existing ACO updates
are re-derived as a particular implementation of the CE method.
It should be noted that Figure 1 describes the MBS approach in its “pure”

form, where the model update is based solely on the current solutions’ sample.
However, many MBS algorithms update the model using not only the cur-
rent sample, but also some additional information gathered during the search
and stored in the auxiliary memory, as described in Figure 2. In particular, a
recently developed class of evolutionary algorithms called estimation of distri-
bution algorithms (EDAs) (Pelikan et al., 1999) may be considered a particular
realization of MBS with an auxiliary memory that stores high-quality solutions
encountered during the search. Not only all these algorithms belong to the
MBS approach, but many of them are actually closely related to the ACO and
CE frameworks, as we show in the following.
The paper is structured as follows. In Section 2 we describe model-based

search in general terms and present SGA and CE as particular realizations of
the MBS approach. The relationship between the two methods is also discussed
in that section.
Section 3 presents the ACO metaheuristic and discusses the implementation

of the CE and the SGA methods using the ACO–type construction mechanism
as a model.
In Section 4 the EDAs are presented as a particular realization of MBS with

auxiliary memory. An overview of existing EDAs is given and their relations to
the ACO framework and the CE method are discussed.
Section 5 draws some conclusions and outlines several interesting future

research directions.

2Although in this paper we present the CE method as a generic approach, it should be
noted that its original applications in combinatorial optimization (Rubinstein, 1999) were tied
to a particular probabilistic model.
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2 Model-based search

Let us consider a minimization problem3 (S, f), where S is the set of feasible
solutions, f is the objective function, which assigns to each solution s ∈ S a
cost value f(s). The goal of the minimization problem is to find an optimal
solution s∗, that is, a feasible solution of minimum cost. The set of all optimal
solutions is denoted by S∗.
At a very general level, the model-based search approach attempts to solve

this minimization problem by repeating the following two steps:

• Candidate solutions are constructed using some parametrized probabilistic
model, that is, a parametrized probability distributions over the solution
space.

• The candidate solutions are used to modify the model4 in a way that is
deemed to bias future sampling toward low cost solutions.

As it was already mentioned in the introduction, one may also use an auxiliary
memory, in which some important information collected during the search is
stored. The memory, which may store, for example, information on the distri-
bution of the cost values or a collection of high-quality solutions, can be later
used for the model update. Moreover, in some cases we may wish to build a
new model at every iteration, rather than to iteratively update the same one.
For any algorithm belonging to this general scheme, two components, cor-

responding to the two steps above, need to be instantiated:

• A probabilistic model that allows an efficient generation of the candidate
solutions.

• An update rule for the model’s parameters and/or structure.

In the remainder of this section we discuss two systematic approaches within the
MBS framework, namely SGA and CE which define the second component, that
is the update rule for the model. We show that although having a completely
different motivation, the two approaches are closely related. In fact, we show
that a particular version of CE produces the same updates as does SGA.
Throughout the remainder of this section we assume that a spaceM of pos-

sible probabilistic models is given and that it is expressive enough. Specifically,
we need to assume that for every possible solution s, the distribution δs(·) (i.e.,
δs(s

′) = 1, if s′ = s, and 0 otherwise) belongs toM. This condition may actu-
ally be relaxed by assuming instead that δs is in the closure ofM, that is that
there exists a sequence Pi ∈ M for which lim

i→∞
Pi = δs. This “expressiveness”

assumption is needed in order to insure that the sampling can concentrate in
the proximity of any solution, the optimal solution in particular.

3The obvious changes must be done if a maximization problem is considered.
4The model’s structure may be fixed in advance, with solely the model’s parameters being

updated, or alternatively, the structure of the model may be allowed to change as well.
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2.1 Stochastic gradient ascent

Let us assume that the model structure is fixed, and the model space, M,
is smoothly parametrized by T ∈ Φ ⊂ R

m, where Φ is an m-dimensional
parameter space. In other words, M = {PT (·)|T ∈ Φ} and for any s ∈ S
the function PT (s) is smooth

5 with respect to T .
The original optimization problem may be replaced with the following equiv-

alent continuous maximization problem:

T ∗ = argmax
T

E(T ), (1)

where E(T ) = ETQf (s), ET denotes expectation with respect to PT , and Qf (s)
is a fixed quality function, which is strictly decreasing with respect to f , i.e.,
Qf (s1) < Qf (s2) ⇔ f(s1) > f(s2). It may be easily verified that, under the
“expressiveness” assumption we made about the model space, the support of
PT ∗ is necessarily contained in S∗.
The maximization problem (1) could be tackled using a gradient ascent

method:

• Start from some initial guess T 0.

• At stage t, calculate the gradient ∇E(T t) and update T t+1 to be
T t + αt∇T tE .

The gradient can be calculated (theoretically) as follows:

∇E = ∇ETQf (s) = ∇
∑

s

Qf (s)PT (s) =
∑

s

Qf (s)∇PT (s)

=
∑

s

PT (s)Qf (s)∇ lnPT (s) = ETQf (s)∇ lnPT (s) (2)

However, the gradient ascent algorithm cannot be implemented in practice,
as for its evaluation a summation over the whole search space is needed. A
more practical alternative would be to use stochastic gradient ascent (Bertsekas,
1995), which replaces the expectation in Equation 2 by an empirical mean of a
sample generated from PT .
The update rule for the stochastic gradient is:

T t+1 = T t + αt

∑

s∈St

Qf (s)∇ lnPT t(s), (3)

where St is the sample at iteration t.
In order to derive a practical algorithm from the SGA approach, we need

a model for which the derivatives of the lnPT (·) can be calculated efficiently.
In Section 3.3 we show how this can be done in the context of the iterative
construction scheme used in the ACO metaheuristic.

5Technically, the smoothness assumption means that the function is continuously differen-
tiable.
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2.2 Cross-entropy method

The cross-entropy (CE) method was initially proposed in the stochastic simu-
lation field as a tool for rare events estimation and later adapted as a tool for
combinatorial optimization (Rubinstein, 1999). In this overview we present a
more straightforward derivation of the cross-entropy method (as a combinatorial
optimization tool), without reference to the rare events estimation. Moreover,
although the original presentation of the CE method was tied to a particular
kind of probabilistic model, we give a more general description here.
Starting from some initial distribution P0 ∈M, the CE method inductively

builds a series of distributions Pt ∈M, in an attempt to increase the probability
of generating low-cost solutions after each iteration. A tentative way to achieve
this goal is to set Pt+1 equal to

P̂ ∝ PtQf , (4)

where Qf is, again, some quality function, depending on the cost value.
If this were possible, after n iteration we would obtain Pn ∝ P0Q

n
f , and as

n → ∞, Pn would converge to δs∗ . Unfortunately, even if the distribution Pt

belongs to the familyM, the distribution P̂ as defined by (4) does not neces-
sarily remain in M,6 hence some sort of projection is needed. Consequently,
a natural candidate for Pt+1, is the distribution P ∈ M that minimizes the
Kullback-Leibler divergence (Kullback, 1959), which is a commonly used mea-
sure of misfit between two distributions:

D(P̂‖P ) =
∑

s

P̂ (s) ln
P̂ (s)

P (s)
, (5)

or equivalently the cross-entropy: −
∑

s P̂ (s) lnP (s).

Since P̂ ∝ PtQf , the cross-entropy minimization is equivalent to the follow-
ing maximization problem

Pt+1 = argmax
P∈M

∑

s

Pt(s)Qf (s) lnP (s) (6)

It should be noted that, unlike SGA, in the cross-entropy method the quality
function is only required to be non-increasing with respect to the cost and may
also depend on the iteration index, either deterministically or stochastically, for
example, depending on the points sampled so far. One common choice is, for
example, Qt

f (s) = I(f(s) < ft), where I(·) is an indicator function, and ft is,
for example, some quantile (e.g. lower 10%) of the cost distribution during the
last iteration.
Similarly to the gradient ascent algorithm, problem (6) cannot be solved

in practice, as the evaluation of the function
∑

s Pt(s)Qf (s) lnP (s) requires

6As a simple example, consider the case whereM contains all distributions over the binary
variables x, y such that x and y are independent, and the quality function is Q(x, y) = 2, if
x = y = 0, and 1 otherwise. If, for example, P0 is the uniform distribution (hence in M),
then P̂ (x, y) = 2

5
, if x = y = 0, and 1

5
otherwise, and it can be easily verified that P̂1 is not

inM.
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summation over the whole solution space, and once again a finite sample ap-
proximation is used instead:

Pt+1 = argmax
P∈M

∑

s∈St

Qf (s) lnP (s), (7)

where St is a sample from Pt.
Note that if the quality function is of the form I(f(s) < c), then Equation

(7) defines a maximum-likelihood model, with the sample used for estimation
being restricted to the top-quality solutions. With other quality functions,
Equation (7) may be interpreted as defining a weighted maximum-likelihood
estimate.
In some relatively simple cases, some of which are discussed in Sections 3 and

4, the problem (7) can be solved exactly. In general, however, the analytical
solution is unavailable. Still, even if the exact solution is not known, some
iterative methods for solving this optimization problem may be used.
A natural candidate for the iterative solution of the maximization problem

(7) is gradient ascent:

• Start with T ′ = T t. (Other starting points are possible, but this
is the most natural one, since we may expect T t+1 to be close
to T t.)

• Repeat:

T ′ ← T ′ + α
∑

s∈St
Qf (s)∇ lnPT ′(s)

until some stopping criteria is satisfied.

• Set T t+1 = T ′.

It should be noted that, since the new vector T t+1 is a random variable, de-
pending on a sample, there is no use in running the gradient ascent process till
full convergence. Instead, in order to obtain some robustness against sampling
noise, we may use a fixed number of gradient ascent updates. One particular
choice, which is of special interest, is the use of a single gradient ascent update,
leading to the updating rule:

T t+1 = T t + αt

∑

s∈St

Qf (s)∇ lnPT t(s) (8)

which is identical to the SGA update (3). However, as it was already mentioned
earlier, the CE method imposes less restrictions on the quality function (e.g.,
allowing it to change over time), hence the resulting algorithm may be seen as
a generalization of SGA.
As with SGA, for an efficient implementation, a model is needed, for which

the calculation of the derivatives can be carried out in reasonable time.

3 ACO metaheuristic and the SGA/CE methods

So far we have limited our discussion to the generic approaches for updating
the model. However, this is only one out of the two components needed in any
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MBS algorithm. In order to complete the description of a MBS algorithm, a
probabilistic model needs to be specified.
In this section we describe the ant colony optimization metaheuristic, which

employs a particular type of probabilistic model, in which a structure called
construction graph is coupled with a set of stochastic procedures called artificial
ants, which build solutions in an iterative manner using local information stored
in the construction graph.7 After describing the probabilistic model, we present
several updates that were suggested in the past within the ACO framework as
well as the ones derived from the SGA algorithm and the CE method.

3.1 Ant colony optimization - the probabilistic model

We assume that the combinatorial optimization problem (S, f) is mapped on a
problem that can be characterized by the following list of items8:

• A finite set C = {c1, c2, . . . , cNC
} of components.

• A finite set X of states of the problem, defined in terms of all the possible
sequences x = 〈ci, cj , . . . , ck, . . . 〉 over the elements of C. The length
of a sequence x, that is, the number of components in the sequence, is
expressed by |x|. The maximum length of a sequence is bounded by a
positive constant n < +∞.

• The set of (candidate) solutions S is a subset of X (i.e., S ⊆ X ).

• A set of feasible states X̃ , with X̃ ⊆ X , defined via a set of constraints Ω.

• A non-empty set S∗ of optimal solutions, with S∗ ⊆ X̃ and S∗ ⊆ S.

Given the above formulation, artificial ants build candidate solutions by per-
forming randomized walks on the completely connected, weighted graph G =
(C,L, T ), where the vertices are the components C, the set L fully connects the
components C, and T is a vector gathering so-called pheromone trails τ .9 The
graph G is called construction graph.
Each artificial ant is put on a randomly chosen vertex of the graph and then

it performs a randomized walk by moving at each step from vertex to vertex in
the graph in such a way that the next vertex is chosen stochastically according
to the strength of the pheromone currently on the arcs. While moving from
one node to another of the graph G, constraints Ω may be used to prevent ants
from building infeasible solutions. Formally, the solution construction behavior
of a generic ant can be described as follows:

7It should be noted that the same type of model was later (but independently) used in the
CE framework under the name “associated stochastic network” (Rubinstein, 1999; Rubinstein,
2001).

8How this mapping can be done in practice has been described in a number of earlier papers
on the ACO metaheuristic; see, for example, (Dorigo and Di Caro, 1999),(Dorigo et al., 1999).

9Pheromone trails can be associated to components, connections, or both. In the following,
unless stated otherwise, we assume that the pheromone trails are associated to connections,
so that τ(i, j) is the pheromone associated to the connection between components i and j. It
is straightforward to extend algorithms to the other cases.

8



ant solution construction

• for each ant:

– select a start node c1 according to some problem dependent
criterion,

– set k = 1 and xk = 〈c1〉.

• While (xk = 〈c1, c2, . . . , ck〉 ∈ X̃ and xk /∈ S and Jxk
�= ∅) do:

at each step k, after building the sequence xk, select the next
node (component) ck+1 randomly following

PT (ck+1 = c|xk) =































F(ck,c)

(

τ(ck, c)
)

∑

(ck,y)∈Jxk

F(ck,y)

(

τ(ck, y)
) if (ck, c)∈Jxk

,

0 otherwise;

(9)

where a connection (ck, y) belongs to Jxk
iff the sequence xk+1 =

〈c1, c2, . . . , ck, y〉 satisfies the constraints Ω (i.e., xk+1 ∈ X̃ ) and
F(i,j)(z) is some monotonic function (most commonly, z

αη(i, j)β,
where α, β > 0 and η are heuristic “visibility” values).10 If at
some stage xk /∈ S and Jxk

= ∅, i.e., the construction process
has reached a dead-end, the current state xk is discarded.11

The probabilistic rule (9) together with the underlying construction graph im-
plicitly define a first component of the MBS algorithm — the probabilistic
model. Having chosen the probabilistic model, the next step is to choose the
parameter update mechanism. In the following we describe several updates
that were suggested in the past within the ACO framework as well as the ones
derived from the SGA algorithm and the CE method.

3.2 Ant colony optimization - the pheromone updates

Many different schemes for pheromone update have been proposed within the
ACO framework (see (Stützle and Dorigo, 1999; Dorigo and Stützle, 2000) for
an extensive overview). Most of them can be described, however, using the
following generic scheme:

10For certain problems, one may find useful to use a more general scheme, where F depends
on the pheromone values of several “related” connections, rather than just a single one. More-
over, sometimes selection schemes, which are more general than the random-proportional rule

above, may be considered, as for example, the pseudo-random-proportional rule (Gambardella
and Dorigo, 1995).

11This situation may be prevented by allowing artificial ants to build infeasible solutions
as well. In such a case an infeasibility penalty term is usually added to the cost function. It
should be noted, however, that in most settings ACO was applied to, the dead-end situation
does not occur.
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Generic ACO Update

• ∀s ∈ St,∀(i, j) ∈ s : τ(i, j)← τ(i, j) +Qf (s|S1, . . . , St)

• ∀(i, j) : τ(i, j)← (1− ρ) · τ(i, j)

where St is the sample in the t-th iteration, ρ, 0 ≤ ρ < 1, is the
evaporation rate and Qf (s|S1, . . . , St) is some “quality function”,
which is typically required to be non-increasing with respect to f .

Different ACO algorithms were using different quality functions. For example,
in the very first ACO algorithm — Ant System (Dorigo et al., 1991; Dorigo
et al., 1996) — the quality function was simply 1/f(s). In a more recently
proposed scheme, called global best update (Stützle and Hoos, 1997; Dorigo and
Gambardella, 1997), the quality function was:

Qf (s|S1, . . . , St) =















1/f(s) if s = argmin
s′∈

⋃

t

i=1
Si

f(s′),

0 otherwise;

(10)

that is, only the best-so-far solution has non-zero quality (the quality function
for the iteration best update (Stützle and Dorigo, 1999) is defined similarly). In
(Dorigo et al., 1996) an elitist strategy was introduced, in which the quality
function was a linear combination of the previous two. In case a good lower
bound on the optimal solution cost is available, one may use the following
quality function (Maniezzo, 1999):

Qf (s|S1, . . . , St) = τ0

(

1−
f(s)− LB

f̄ − LB

)

= τ0
f̄ − f(s)

f̄ − LB
, (11)

where f̄ is the average of the costs of the last k solutions and LB is the lower
bound on the optimal solution cost. With this quality function, the solutions
are evaluated by comparing their cost to the average cost of the other recent
solutions, rather than by using the absolute cost values. In addition, the quality
function is automatically scaled based on the proximity of the average cost to
the lower bound.
Two modifications of the generic update, described above, were recently

proposed. In the first, MAX–MIN Ant System (Stützle and Hoos, 1997),
maximum and minimum pheromone trail limits were introduced. With this
modification the probability to generate any particular solution is kept above
some positive threshold, which helps preventing search stagnation and prema-
ture convergence to suboptimal solutions.
The second modification, proposed under the name Hyper-Cube (HC) ACO

(Blum et al., 2001) in the context of combinatorial problems with binary coded
solutions,12 is to normalize the quality function, hence obtaining an automatic
scaling of the pheromone values:

12Using the notation of Section 3, in such a case the components are bit assignments to the
locations, and the pheromone values are associated with the components, rather than with
the connections.

10



τi ← (1− ρ)τi + ρ

∑

s∈St
si=1

Qf (s)
∑

s∈St
Qf (s)

. (12)

While all the updates described above are of somewhat heuristic nature, the
SGA and the CE methods allow to derive parameters update rules in a more
systematic manner, as we show next.

3.3 The stochastic gradient ascent update

In Section 2.1 an update rule for the stochastic gradient was derived:

T t+1 = T t + αt

∑

s∈St

Qf (s)∇ lnPT t(s), (13)

where St is the sample at stage t.
As was shown in (Meuleau and Dorigo, 2000), in case the distribution is

implicitly defined by an ACO–type construction process, parametrized by the
vector of the pheromone values, T , the gradient ∇ lnPT (s) can be efficiently
calculated. The following calculation is a generalization of the one in (Meuleau
et al., 2001).
Since the individual steps in the ant solution construction are inde-

pendent, it follows that, for s = 〈c1, c2, . . . 〉,

PT (s) =

|s|−1
∏

k=1

PT

(

ck+1

∣

∣

∣
prefk(s)

)

, (14)

where prefk(s) is the k-prefix of s, and consequently

∇ lnPT (s) =

|s|−1
∑

k=1

∇ lnPT
(

ck+1

∣

∣

∣
prefk(s)

)

. (15)

Finally, given a pair of components (i, j) ∈ C2, using Equation (9), it is easy to
verify that:

• if i = ck and j = ck+1 then

∂

∂τ(i, j)

(

lnPT

(

ck+1

∣

∣

∣
prefk(s)

)

)

=

∂

∂τ(i, j)

(

lnF
(

τ(i, j)
)

− ln
∑

(i,y)∈Jxk

F
(

τ(i, y)
)

)

=



1− F
(

τ(i, j)
)

/

∑

(i,y)∈Jxk

F
(

τ(i, y)
)





F ′
(

τ(i, j)
)

F
(

τ(i, j)
) =

(

1− PT

(

j
∣

∣

∣prefk(s)
)

)

G
(

τ(i, j)
)

,

where G(·) = F ′(·)/F (·) and the subscript of F was omitted for the clarity
of presentation.
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• if i = ck and j �= ck+1 then

∂ ln

(

PT

(

ck+1

∣

∣

∣prefk(s)
)

)

∂τ(i, j)
= −PT

(

j
∣

∣

∣prefk(s)
)

G
(

τ(i, j)
)

.

By combining these results, the following pheromone update rule is derived:

SGA Update

• ∀s ∈ St, (i, j) ∈ s : τ(i, j)← τ(i, j) + αtQf (s)G(τ(i, j)),

• ∀s = 〈c1, c2, . . . 〉 ∈ St, 1 < k < |s|, i = ck :

τ(i, j)← τ(i, j)− αtQf (s)PT (j|prefk(s))G(τ(i, j)).

Hence any connection (i, j) used in the construction of a solution is reinforced
by an amount αtQf (s)G(τ(i, j)), and all the pheromone values are evaporated

by an amount αtQf (s)PT (j
∣

∣

∣
prefk(s))G(τ(i, j)).

In order to guarantee stability of the resulting algorithm, it is desirable to
have a bounded gradient ∇ lnPT (s). This means that a function F , for which
G = F ′/F is bounded, should be used. (Meuleau and Dorigo, 2000) suggest
using F (·) = exp(·), which leads to G ≡ 1. It should be further noted that if,
in addition, Qf = 1/f and αt = 1, the reinforcement part becomes 1/f as in
Ant System.

3.4 The cross-entropy update

As we have shown in Section 2.2, the CE approach requires solving the following
intermediate problem:

argmax
P∈M

∑

s∈St

Qf (s) lnP (s). (16)

Let us now consider this problem in more details in case of a ACO–type prob-
abilistic model.
At the maximum the gradient must be zero:

∑

s∈St

Qf (s)∇ lnPT (s) = 0. (17)

In some relatively simple cases, for example, when the solution s is represented
by an unconstrained string of bits of length n, (s1, . . . , sn), and there is a single
parameter τi for the i-th position in the string,

13 such that PT (s) =
∏

i pτi
(si),

the equation system (17) reduces to a set of independent equations:

d ln pτi

dτi

∑

s∈St
si=1

Qf (s) = −
d ln(1− pτi

)

dτi

∑

s∈St
si=0

Qf (s), (18)

13This is a particular subtype of models, used in HC-ACO, without any non-trivial con-
straints.
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which may often be solved analytically. For example, for pτi
= τi it can be

easily shown that the solution of Equation (18) is simply

τi =

∑

s∈St
si=1

Qf (s)
∑

s∈St
Qf (s)

. (19)

Now, since the pheromone trails τi in (19) are random variables, whose values
depend on the particular sample, we may wish to make our algorithm more
robust by introducing some conservatism into the update. For example, rather
than discarding the old pheromone values, the new values may be taken to be
a convex combination of the old values and the solution (19):

τi ← ρτi + (1− ρ)

∑

s∈St
si=1

Qf (s)
∑

s∈St
Qf (s)

. (20)

The resulting update is identical to the one used in the Hyper-Cube ACO (Blum
et al., 2001).
In general, however, Equations (17) are coupled and an analytical solution

is unavailable. Nevertheless, in the actual implementations of the CE method
the update was of the form (19) (with some brief remarks about using (20))
(Rubinstein, 2001), which may be considered a rough approximation to the
exact solution of the cross-entropy minimization problem (7).
Since, in general, the exact solution is not available, an iterative scheme

such as gradient descent could be employed, as described in Section 2.2. As we
have shown in the previous section, the gradient of the log-probability may be
calculated as follows:

• if i = ck and j = ck+1 then

∂ ln

(

PT

(

ck+1

∣

∣

∣
prefk(s)

)

)

∂τ(i, j)
=

(

1− PT

(

j
∣

∣

∣
prefk(s)

)

)

G(τ(i, j)),

• if i = ck and j �= ck+1 then

∂ ln

(

PT

(

ck+1

∣

∣

∣prefk(s)
)

)

∂τ(i, j)
= −PT

(

j
∣

∣

∣prefk(s)
)

G
(

τ(i, j)
)

, (21)

and these values may be plugged into any general iterative solution scheme
of the cross-entropy minimization problem, for example, the one described by
Equation (8).
To conclude, we have shown that if we use (19) as a (possibly approxi-

mate) solution of Equation (7), the Hyper-Cube ACO algorithm is derived. If
otherwise we use a single-step gradient ascent for solving (7), we obtain a gener-
alization of the SGA update, in which the quality function is allowed to change
over time.
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4 Model-based genetic algorithms

In the “pure” model-based search, as it was described in the introduction, the
parametrized model is iteratively updated, using the information extracted from
the sample. However, if the whole search history is compressed into a single
vector of model’s parameters, a lot of useful information may be lost. In order
to make a better use of the previous samples, many existing MBS algorithms use
an auxiliary memory, in which they store some additional information collected
during the search. This information is then used together with the latest sample
for updating the model. For example, as we have seen in Section 3.2, some
existing ACO algorithms store the cost of the best-so-far solution or the average
of the costs of the recent solutions.
Recently, a new class of algorithms, called estimation of distribution algo-

rithms (EDAs), has been developed in the evolutionary computation commu-
nity. These algorithms may be considered a particular type of MBS, using an
auxiliary memory for storing some high-quality solutions encountered during
the search. In the following we give a brief overview of some existing EDAs
and discuss their relations to the MBS algorithms described in the previous
sections.

4.1 Estimation of distribution algorithms

As already mentioned in Section 1, the classical genetic algorithm (GA) can
be considered an example of the instance-based approach, in which the search
is carried out by evolving the population of candidate solutions (typically rep-
resented by a string of bits) using selection, crossover and mutation operators
(Goldberg, 1989).
The classical GA approach relies heavily on the assumption that there are

some building blocks, from which a good solution can be constructed. More-
over, it is assumed that with a proper choice of the crossover operator, these
blocks will be (implicitly) detected and maintained in the population, while the
selection operator will bias the search towards low-cost solutions. However, in
practice, finding an appropriate crossover operator turns out to be a difficult
task, while using some “general purpose” crossover operators often leads to in-
ferior performance. Another problem is the existence of genetic drift (Goldberg
and Segrest, 1987), that is, a loss of population diversity due to the finite popu-
lation size, and, as a result, a premature convergence to sub-optimal solutions.
In order to cope with the finite-population effects and also as an attempt to

find an efficient alternative to the crossover/mutation operators, the estimation
of distribution algorithms (Mühlenbein et al., 1996) were proposed. These algo-
rithms generate new solutions using probabilistic models, instead of crossover
and mutation, and may be described using the following generic scheme:

EDA Iteration

• Generate new solutions using the current probabilistic model.

• Replace (some of) the old solutions by the new ones.

• Modify the model using the new population.
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Figure 3: Graphic description of the estimation of distribution algorithms.

This scheme, which may be seen as a particular type of MBS with auxiliary
memory, is represented graphically in Figure 3.
Different EDAs use different methods for construction/modification of the

probabilistic model. However, most of them use the same method for estimating
model parameters — a (possibly weighted) maximum-likelihood estimation. In
this respect they are all closely related to the cross-entropy method described
earlier and, as we show in the following, some of them employ particular forms
of CE–type update.
In the remainder of this section we give an overview of existing EDAs and

discuss their relations with the algorithms presented in the previous sections
of the paper. We consider two major classes of EDAs. The first class contains
the algorithms that use a fixed simple model, which assumes that there are no
interactions between the different string positions, that is, that the assignments
to the different positions are independent. We observe that this is a particular
kind of ACO–type model and show that all these algorithms lead to particular
forms of ACO–type updates. The algorithms in the second class allow for
dependencies between the positions, and, consequently, try to infer both the
model structure and the model’s parameters. Unlike the first group, both the
models and the update mechanisms used by the algorithms in the second group
are different from the ones used in the ACO framework.
It should be noted that all of the following algorithms were originally for-

mulated for maximization problems, hence the obvious changes were done in
order to translate them into the minimization setting that we consider in this
paper.

4.1.1 Assuming independence between string positions

All the algorithms presented in this section create the new solutions, coded
as binary vectors, by independently generating assignments for every position,
with the i-th position having probability pi to take value 1. This may be consid-
ered a particularly simple ACO–type model, where the components correspond
to bit assignments, pheromone trails are associated with the components and
there are no constraints.
The idea was initially proposed in (Syswerda, 1993), where the necessary
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probabilities were calculated as weighted frequencies over the population and
randomly perturbed in order to simulate mutation. Apart from the mutation
component, which seems to be an historical artifact, borrowed from the classical
GA and absent in later algorithms, this method is clearly an instance of the
MBS with auxiliary memory in the form of the solution population, which uses
the HC-ACO–type (or, equivalently, CE–type) update with learning rate ρ = 1
for constructing the probabilistic model.
A similar approach was used in the univariate marginal distribution al-

gorithm (UMDA) (Mühlenbein et al., 1996), the only difference being that in
UMDA explicit classical selection procedures were used instead of giving weights
to the solutions.
This idea was pushed even further in the population-based incremental

learning (PBIL) algorithm (Baluja, 1994; Baluja and Caruana, 1995), where
the population is completely replaced by a probability vector14, p̄, with all
pi’s initially set to 0.5. At every iteration a sample S is generated using the
probability vector and then the probability vector is updated as follows:

PBIL Update

• Sbest ← a fixed number of lowest cost solutions from S,

• for every s ∈ Sbest

pi ← (1− ρ)pi + ρsi,

where ρ is the learning rate.
As it can be easily seen, this update is virtually identical to the HC-ACO

update with the quality function being the indicator for the lowest cost solu-
tions. In particular, if only the best solution is used for the update, HC-ACO
with iteration-best update is obtained.
Finally, the compact genetic algorithm (cGA) (Harik et al., 1999) was pro-

posed as a modification of PBIL, intended to represent more faithfully the
dynamics of the real GA algorithm. At every iteration two solutions, a and b,
are generated using the probability vector, and then the probability vector is
updated as follows (assuming, without loss of generality, that a has lower cost):

cGA Update

• if ai �= bi then

if ai = 1 then pi ← pi + 1/n,
else pi ← pi − 1/n,

where n is a parameter, equivalent to the population size in the
classical GA.

It can be easily verified that this update can be cast into the basic ACO frame-
work, with the quality function defined as Q(a) = 1/n, Q(b) = −1/n.

14In this sense PBIL belongs to the MBS approach in its “pure” form”.
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4.1.2 Modeling dependencies between string positions

All the algorithms described in Section 4.1.1 assumed a fixed model for the
solutions’ distribution, namely independence between assignments at different
positions, and proposed different rules for calculating the parameters of the
model. However, it may well happen that certain components produce good so-
lutions only in conjunction with others, hence there may be strong dependencies
within the population distribution.
Once the algorithm tries to model these a priori unknown dependencies

between the solution constituents, this simple fixed structure has to be aban-
doned and the correct structure needs to be inferred together with the model’s
parameters.15

In the first EDAs that abandoned the independence assumption, only pair-
wise interactions were covered. The mutual-information-maximizing input clus-
tering (MIMIC) algorithm (de Bonet et al., 1997) maintains a population of the
best solutions seen so far and constructs a chain distribution as a model of pop-
ulation by minimizing the Kullback-Liebler divergence between the model and
the population distribution. In this latter respect, MIMIC can be considered
a particular instance of the CE approach. In practice, MIMIC uses a greedy
search procedure for constructing the chain and the conditional probabilities
(which are the parameters of the model) estimated using sample frequencies,
which is equivalent to the maximum-likelihood estimation.
Baluja and Davies (1997) extend MIMIC in two important respects. First,

they use a broader class of dependency trees instead of chain distributions,
and, consequently, they are able to present an exact polynomial algorithm,
rather than a greedy approximation. Second, instead of explicitly storing the
population, the algorithms history is summarized in a matrix of pairwise joint
frequencies (with more weight given to recent instances), which are later used
for optimal tree construction.
A somewhat more heuristic approach is taken in the Bivariate Marginal

Distribution Algorithm (BMDA) (Pelikan and Mühlenbein, 1999), where the
population is modeled using a forest, that is, a set of mutually independent de-
pendency trees16. The model structure is determined using a Pearson’s χ-square
test (Marascuilo and McSweeney, 1977) for detecting dependencies.
The attempt to obtain yet more general models lead to two distinctive ap-

proaches. The first, extended compact genetic algorithm (Harik, 1999), is a
brute-force generalization of the UMDA, with the population being modeled
using a marginal product model. In the marginal product model the variables
are divided into a number of independent clusters, while within a cluster any
distribution is permitted. The cluster structure is determined by greedily opti-
mizing the minimum description length metric (Mitchell, 1997) and the inter-
cluster distributions are estimated using the population frequencies. A different

15Note, however, that in ACO models, pairwise dependencies may be learned implicitly,
when the pheromone trails are associated with the connections between the components.
Hence ACO provides an alternative way of learning pairwise dependencies, while still main-
taining a fixed-structure model.

16While seemingly more general, this class is in fact equivalent to the class of dependency
trees, as any forest can be represented using a tree with degenerate links.
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approach, which is a generalization of ideas behind the tree-based algorithms
described earlier, is to use a Bayesian network for modeling the population
(Pelikan et al., 1998; Etxeberria and Larranaga, 1999), with the network struc-
ture determined using some standard techniques for Bayesian network learning
(Heckerman, 1995).
To summarize, all of the algorithms described in this section use proba-

bilistic models different from the one employed in ACO. Various criteria are
used for choosing the model structure, but in all these algorithms a (weighted)
maximum-likelihood (or, equivalently, minimal cross-entropy) method is used
for estimating the model’s parameters.

5 Conclusions

During the last decade a new approach for solving combinatorial optimization
problems has been emerging. This approach, which we refer to as model-based
search, tackles the combinatorial problem by sampling the solution space using
a probabilistic model, which is adaptively modified as the search proceeds.
We have described two general approaches, the SGA and the CE methods,

for updating model’s parameters and have shown how they can be applied in
the context of ant colony optimization which is a typical representative of the
MBS approach. Moreover, we have also shown that in many cases the updates
used by the two methods are quite similar (or even identical in some cases),
and sometimes they coincide with existing ACO updates.
Next, we have shown that estimation of distribution algorithms, proposed

in the field of genetic algorithms, also fall into the MBS framework, and that
they are closely related to the other algorithm considered in this paper.
It should be noted, however, that some of the EDAs contain at least one

of the two following important components, absent, for example, in ACO. The
first is a population of solutions, which evolves throughout the search process
and is used for constructing the probabilistic model. The other is the use of
a flexible model structure, which is determined using an appropriate learning
algorithm. However, it is still unclear whether either of these components gives
any advantage in solving real-life problems. In addition, to the best of our
knowledge, all the higher-order EDAs have been applied only to unconstrained
optimization problems, which is a rather atypical situation in combinatorial op-
timization.17 It remains to be seen whether similar algorithms can be designed
in a more general setting. It should be further noted that, if a flexible model
structure is shown to be beneficial in MBS, some new model-selection rules
should probably be used. The usage of the general purpose model-selection
rules, borrowed from the machine learning field, seems to be inappropriate in
the optimization context, since complex models are usually computationally
more expensive, hence a stronger (than in generic learning) bias toward simpler
models should probably be imposed.

17Although for some problems sophisticated schemes for coding the solutions as uncon-
strained binary strings have been devised (e.g., see (Baluja, 1994)), all the useful dependencies
between the solution components may be hidden by these coding schemes.
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Another interesting research direction, suggested by the approach in (Baluja
and Davies, 1997), is to use a collection of sufficient statistics rather than a pop-
ulation, for the construction of the probabilistic model. This can be seen as
a kind of two-stage learning procedure, where the statistics are learned incre-
mentally, in a manner similar to ACO, but the actual (second-stage) model is
re-constructed in every iteration using the first-stage statistics instead of raw
samples.
Finally, the choice of the quality function, which provides a link between the

original cost function and the model update rule, clearly has a crucial effect on
the algorithms’ dynamics. Some of the algorithms described in this paper use
iteration-independent quality functions, while others adapt the quality function
based on the search history. However, the issue of appropriate quality function
choice is still poorly understood and is clearly an interesting future research
direction.
To conclude, considering all these algorithms within a common general

framework provides better understanding of what are the important parts of the
algorithm and what is just an historical artifact due to a particular background
of its proponents. Hopefully, the results presented in this paper will facilitate
cross-fertilization between the considered MBS methods and, perhaps, provide
useful guidelines for designing new efficient optimization algorithms.
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